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Abstract

A long range frustration index R is introduced to the finite con-
nectivity Viana–Bray ±J spin glass model as a new order parameter.
This order parameter is then applied to the random K-satisfiability
(K-SAT) problem to understand its satisfiability transition and to
evaluate its global minimum energy. Associated with a jump in R from
zero to a finite value, SAT-UNSAT transition in random 3-SAT occurs
when the clauses-to-variables ratio α approaches αc(3) = 4.1897. This
transition in random 2-SAT occurs at αc(2) = 1, with R remaining to
be zero as long as α < 4.459. An accumulation of long range frustra-
tion in random 3-SAT of α ≥ αc(3) may explain why it is NP-complete;
its absence in random 2-SAT of αc(2) ≤ α < 4.459 suggests that, the
maximum of satisfied clauses in such a system may be determined with
times scaling polynomially with system sizes. The zero–temperature
phase–diagram of the Viana–Bray ±J spin glass model is found to be
identical to that of the random 2-SAT.
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Spin glass statistical physics has been applied to hard combinatorial op-
timization problems for many years. This interaction between statistical
physics and computer science has improved our understanding of NP-completeness
and computation complexity [1]; on the other hand, it also stimulates further
development of spin glass theories. The present work represents another step
along this direction. We introduce a new order parameter to a spin glass
model of the random K-satisfiability (K-SAT) problem as well as the ±J
Viana–Bray model [2] and presents new insights on the ground states of such
systems.

The random K-SAT is at the root of computation complexity [1]. A K-
SAT formula involves N Boolean variables and M = αN constraints or
clauses, each of which is a disjunction of K randomly chosen variables or their
negations. A K-SAT formula is satisfiable (SAT) if there exists an assignment
of the Boolean variables such that all clauses are satisfied; otherwise it is
unsatisfiable (UNSAT). For example, the 2-SAT formula (x1 ∨ x̄2) ∧ (x1 ∨
x2) ∧ (x̄1 ∨ x3) ∧ (x2 ∨ x̄3) with N = 3 and M = 4 is SAT through x1 =
x2 = x3 = TRUE. It was observed [3, 4, 5] that, the probability p of a
randomly constructed K-SAT formula being satisfiable drops from p ≃ 1 to
p ≃ 0 over a small range of the clauses-to-variables ratio α around certain
αc (for K = 3, αc ∼ 4.2 [4, 5, 6]). Furthermore, at the vicinity of αc, an
exponential slowing down in a search algorithm for random K-SAT with
K ≥ 3 was observed [3]. Such threshold phenomena are reminiscent of what
is usually observed in a physical system around its phase transition or critical
point. Concepts of spin glass physics, such as replica symmetry breaking and
proliferation of metastable states, were applied to random K-SAT in some
recent contributions [7, 8, 9, 10, 11]. Our understanding of the satisfiability
transition, however, is still far from being complete.

In this paper, with the introduction of a long range frustration index R, ran-
dom K-SAT and the zero temperature phase diagram of the ±J Viana–Bray
model [2] is studied from the viewpoint of long range frustration. We find
that at the satisfiability transition point of random 3-SAT αc(3) = 4.189724,
there is a jump in R from zero to R = 0.2605, while the fraction of unfrozen
vertices q0 drops from unity to q0 = 0.5270. This differs qualitatively from
what happens in random 2-SAT. In the later case, R remains to be zero
at the two sides of the transition point αc(2) = 1; it becomes positive only
when a ≥ 4.459. We suggest that the NP-completeness of random 3-SAT at
α ≥ αc(3) may be due to an accumulation of long range frustration. If this
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conjecture is correct, then there must be efficient algorithms to determine
the maximal number of satisfied clauses for random 2-SAT in the parame-
ter range of 1 ≤ α < 4.459. The zero temperature phase diagram of the ±J
Viana–Bray model is found to be identical to that of the random 2-SAT. Long
range frustration in the vertex–cover problem was also studied in an earlier
paper [12], where we were able to achieve an apparently exact expression for
the minimal vertex–cover size.

We begin with the random K-SAT problem. We follow Ref. [11] and repre-
sent a random K-SAT formula by an equivalent spin–glass system of N vari-
able nodes and M = αN function nodes. Each variable node i represents a
Boolean variable; it has a binary spin state σi = ±1; it is connected to k func-
tion nodes, with k obeying the Poisson distribution fKα(k) = e−Kα(Kα)k/k!
for N sufficiently large. Each function node a represents a a clause (con-
straint); it is linked to K randomly chosen variable nodes i1, . . . , iK ; it has
energy Ea that is either 0 (clause satisfied) or 1 (clause violated):

Ea =
K∏

r=1

1 − Jr
aσir

2
, (1)

where Jr
a is the edge strength between a and variable node ir: Jr

a = −1 or 1
depending on whether Boolean variable ir in clause a is negated or not. The
edge (a, ir) is violated (satisfied) if Jr

aσir = −1 (= 1). In a given random K-
SAT formula, Jr

a is a quenched random variable with value equally distributed
over ±1. The total energy of the system for each of the 2N possible spin
configurations is expressed as E[{σi}] =

∑M
a=1 Ea. As we are interested in

the SAT-UNSAT transition, only those configurations which have the global
minimum energy need to be considered.

In the thermodynamic limit of N → ∞, there can exist an exponential num-
ber of ground–energy configurations for a given random K-SAT formula.
Following Ref. [13], these configurations are grouped into different (macro-
scopic) states. A state of the system contains (exponentially) many con-
figurations. These configurations all have the same minimum energy; any
two configurations are mutually reachable by first flipping a finite number of
spins in one configuration and then letting the system relax [12]. We focus on
a randomly chosen state β. In this state, the spin values of a total number
of q+N variable nodes are fixed (frozen) to σ = +1 in all configurations, and
those of another q−N variable nodes are frozen to σ = −1, while each of
the remaining q0N variable nodes has spin value σ = +1 in some (but not
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all) configurations and σ = −1 in the other configurations [12]. Obviously,
q+ = q− = (1 − q0)/2.

We now address the possibility of long range frustration among these q0N
unfrozen variable nodes [12]. Question: if we fix the spin value of such a
variable node i to σi = σ∗

i with σ∗
i being equally distributed over ±1, how

many unfrozen variable nodes will eventually have their spin values be fixed
as a consequence?

The total number s (≥ 1) of affected variable nodes may reach infinity as
N → ∞. If this happens, variable node i is referred to as type-I unfrozen
and σ∗

i is referred to as its canalizing value. This happens with probability
R, with R being our long range frustration index. The infinite percolation
clusters evoked by two randomly chosen type-I unfrozen variable nodes i
and j must have an infinite intersection, therefore with probability one-half

their canalizing values σ∗
i and σ∗

j will be in conflict [12]: if σi = σ∗
i , then

σj = −σ∗
j ; if σj = σ∗

j , then σi = −σ∗
i . On the other hand, if s is finite

with probability distribution f(s), then variable node i is type-II unfrozen.
Obviously, R = 1 −

∑∞
s=1 f(s). We find that f(s) is determined by the

following self-consistent equation

f(s) = fλ0
(0)δ1

s +
∞∑

k=1

fλ0
(k)

∑
{sl}

δs−1
s1+...sk

k∏
l=1

f(sl), (2)

where λ0 = (3/2)αq0(1− q0)(1−R) for random 3-SAT and λ0 = αq0(1−R)
for random 2-SAT; fλ0

(k) is again the Poisson distribution with mean λ0; δ is
the Kronecker symbol. The derivation of Eq. (2) is quite tedious and will be
given elsewhere [14]. Here we only mention that, when the spin of a type-II
unfrozen variable node i is fixed to σi = σ∗

i , on average λ0 nearest neighboring
unfrozen variable nodes will also have their spins fixed (two variable nodes
are referred to as nearest neighbors if they share a common function node).
From Eq. (2) we realize that R is determined by

R = 1 − exp(−λ0R). (3)

Now we determine the value of the other order parameter q0. For this pur-
pose, we first construct k new function nodes a1, a2, . . . , ak, with k following
the Poisson distribution fKα(k). Each of these function nodes, say al, is
connected to K − 1 randomly chosen variable nodes with strengths equally
distributed over ±1. Before connecting to al, the spins of these K−1 variable
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nodes may already be frozen to specific values that violate all the edges link-
ing to function node al. The mean number of such new function nodes is λ1,
with λ1 = (3/4)α(1− q0)

2 for random 3-SAT and λ1 = α(1− q0) for random
2-SAT. Another important possibility is that some or all of the K − 1 neigh-
boring variable nodes of al were originally unfrozen while the others were
already frozen to spin values that violate the corresponding edges to al. In
this case, al is satisfiable by flipping one of its originally unfrozen neighbors.
However, a careful analysis leads to the observation that, even in this case, an
infinite number of originally unfrozen variable nodes may need to be fixed in

all configurations of state β if al is to be satisfied. The mean number of new
function nodes with this property is 2λ2, with λ2 = (3/2)αq0R(1−q0+q0R/2)
for random 3-SAT and λ2 = αq0R for random 2-SAT. Two such new function
nodes, although both are satisfiable, might not be simultaneously satisfiable
due to long range frustration.

After these k new function nodes are added, we then add a new variable node
0 to the system and connect it to these function nodes with edge strengths
equally distributed over ±1. Suppose we fix the spin value of variable node
0 to σ0 = +1 (or σ0 = −1), then m of its neighboring function nodes will be
violated. This number obeys the following probability distribution Pv(m):

Pv(m) =
m∑

n=0

fλ1/2(n)Pf(m − n), (4)

where Pf(n) is the probability that, n neighboring function nodes of variable
node 0, although all are separately satisfiable, are violated due to long range
frustration. The expression of Pf(n) is

Pf(n) = fλ2
(2n)Cn

2n2−2n +
∞∑

n′=2n+1

fλ2
(n′)Cn

n′21−n′

, (5)

where Cn
n′ = n′!/[n!(n′ − n)!]. A detailed derivation of Eqs. (4) and (5) will

be given in a later paper [14].

As N → ∞, the fraction of unfrozen variable nodes q0 equals to the proba-
bility for variable node 0 to be unfrozen, namely

q0 =
∞∑

m=0

Pv(m)2; (6)

and the energy increase due to the addition of variable node 0 is

ǫ1(α) =
∞∑

m=0

∞∑
m′=0

Pv(m)Pv(m
′) min(m, m′). (7)
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After addition of variable node 0, the system has N + 1 variable nodes and,
on average, αN + Kα function nodes, with clauses-to-variables ratio α′ =
α+(K−1)α/(N+1). Suppose the energy density ǫ of the system is a function
only of α. Then we get from (N + 1)ǫ(α′) = Nǫ(α) + ǫ1 the expression

ǫ(α) =
1

(K − 1)α1/(K−1)

∫ α

0
α̃

2−K

K−1 ǫ1(α̃)dα̃. (8)

In the case of random vertex–cover, the energy density derived through this
way is a lower bound when there exists long range frustration. When R > 0,
an upper bound for the energy density can also be derived. For the enlarged
system to have clauses-to-variables ratio α, on average (K − 1)α function
nodes must be removed [11]. The energetic contribution of these function
nodes must also be removed. This energy comes from two parts: (i) the
energy sum of these individual function nodes, ∆E = (K − 1)α[(1− q0)/2]K

and, (ii) additional energy ∆E ′ caused by long range frustration among these
function nodes. Therefore,

ǫ(α) = ǫ1 − ∆E − ∆E ′. (9)

If we set ∆E ′ = 0, Eq. (9) gives an upper bound.

The values of the long range frustration index R and the fraction of unfrozen
variable nodes q0 are shown in Fig. 1 for random 3-SAT and in Fig. 2 for
random 2-SAT. For random 3-SAT, when α < αc(3), all the variable nodes
are unfrozen (q0 = 1) and not frustrated (R = 0). The system is in the SAT
phase, with zero energy density (Fig. 3). This solution of q0 = 1 and R = 0
is locally stable in all values of α. At α = αc(3), another stable solution
appears: the long range frustration index R suddenly jumps to R = 0.2605
and q0 drops to q0 = 0.5270, suggesting that there is a sudden accumulation
of long range frustration among the unfrozen variables. When α > αc(3),
the system is in the UNSAT phase with positive energy density (Fig. 3).

For random 2-SAT, SAT-UNSAT transition occurs at αc(2) = 1. When
α ≥ αc(2), the fraction of unfrozen variable nodes gradually decreases from
unity and the energy density gradually increases from zero; however, the long
range frustration index R remains to be zero for α < 4.459, suggesting the
absence of long range frustration among the unfrozen variables. Long range
frustration only builds up when α ≥ 4.459 (inset of Fig. 2).

A discontinuity of the order parameter q0 in random 3-SAT at the SAT-
UNSAT transition point was first noticed in [9]. This was suggested to be a
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Figure 1: Long range frustration index R (circles) and fraction of unfrozen
variables q0 (squares) as a function of clause-to-variable ratio α for random
3-SAT.
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Figure 2: R (solid line) and q0 (dashed line) as a function of α for random
2-SAT.
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possible reason why random 3-SAT is NP-complete at around αc(3), since q0

only changes gradually at the SAT-UNSAT transition of random 2-SAT. We
suggest that a more deeper reason may be the accumulation of long range
frustration in random 3-SAT and its absence in random 2-SAT. Long range
frustration causes the spin values of distantly separated variable nodes to be
strongly correlated. A local search algorithm is unable to recognize such long
range frustration effects; at around αc(3), a finite fraction of all those possible
2N configurations might need to be surveyed to draw a concrete conclusion on
the satisfiability of a 3-SAT formula. To test whether long range frustration
is the true reason for NP-completeness, we suggest the following experiment.
Generally speaking, to determine the maximal number of satisfied clauses
for random 2-SAT (Max-2-SAT) is NP-complete for α ≥ 1 [15]. However, as
shown in this work, when 1 ≤ α < 4.459, there is no long range frustration
in this system. If it is necessary to have long range frustration in order to be
NP-complete, then there must a polynomial–time algorithm for random Max-
2-SAT. This can be checked by testing known or newly designed algorithms,
such as survey propagation [16], to random 2-SAT formulas with known
minimal energies.

The SAT-UNSAT transition point for random 2-SAT is predicted to be
αc(2) = 1. This is in agreement with known rigorous results [15]. For ran-
dom 3-SAT, we predict αc(3) = 4.189724. This value is located between the
rigorously known lower and upper bounds [6]. It is lower than the mean–field
value of 4.267 reported in Ref. [11]. This is unsurprising, since long range
frustration of the type discussed here was neglected in [11]. Kirkpatrick and
Selman [4] reported αc = 4.17 ± 0.05 by using computer simulation and fi-
nite size scaling. Another value of αc ≃ 4.258 was reported in Ref. [5]. The
estimate of [4] may be more plausible. In the random vertex–cover problem,
the results obtained by similar finite–size scaling method [17] were in full
agreement with theoretical predictions [12].

We now briefly discuss the zero temperature phase diagram of the ±J Viana–
Bray model [2]. The model is characterized by the Hamitonian

E[{σi} =
∑
(ij)

Jijσiσj , (10)

where the summation is over all the edges (ij) of a Poisson random graph of
mean vertex degree c; the edge strength Jij = ±1, with equal probability; and
σi = ±1 is the spin value on vertex i. The zero temperature phase diagram
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Figure 3: The energy density lower bound (solid lines) and upper bound
(dashed lines) for random 3-SAT and 2-SAT as a function of α.

of this model was first reported in Ref. [18]. It was found that, when c < 1,
the system is in the paramagnetic phase with no frozen vertices, i.e., q0 = 1;
when c ≥ 1, some vertices become to be frozen to positive or negative spin
values, with q0 gradually decreasing from unity.

The Hamitonian Eq. (10) is similar to that of the random 2-SAT and can
be studied by the same method mentioned in the previous part of this paper
[14]. Actually, we find that the zero temperature phase diagram of Eq. (10)
is identical to Fig. 2 of the random 2-SAT: the transition between the param-
agnetic phase and the spin glass phase occurs at c = 1, confirming the result
of Ref. [18]; in the spin glass phase, long range frustration only builds up
when the mean vertex degree c ≥ 4.459. We also noticed that when the long
range frustration index is set to R = 0, the order parameter q0 in Eq. (6) has
the same expression as Eq. (15) of Ref. [18].

In summary, we have investigated the possibility of long range frustration
in the random K-SAT problem as well as in the finite–connectivity ±J spin
glass model. We found that SAT-UNSAT occurs at αc = 4.1897 and αc = 1
for random 3-SAT and 2-SAT, respectively. The SAT-UNSAT transition is
associated with a discontinuity in the order parameters in the 3-SAT systems,
namely with a jump in the long range frustration index R and a drop in the
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fraction of unfrozen variables q0. The SAT-UNSAT transition in random
2-SAT is associated only with a gradual increase in one order parameter
q0 while R remains to be zero. We suggested that the occurrence of long
range frustration may be the real reason why at α ∼ 4.2, search algorithms
for random 3-SAT usually needs exponential computation times to reach a
conclusion. As a test of this proposal, one can check whether the random
MAX-2-SAT in the range of 1 ≤ α < 4.459 is computationally easy or not.
The zero temperature phase diagram of ±J Viana–Bray model is identical
to that of the random 2-SAT.

If long range frustration of the type discussed in this article and in Ref. [12]
is really at the heart of computational complexity of NP-complete combi-
natorial optimization problems, then algorithms must be explored to try to
trace such frustration effects. This is anticipated to be a major challenges to
theoretical computer scientists.

The method used in the present work may also be applicable to other finite–
connectivity spin glass models [2]. As in Ref. [12], we have not yet addressed
the issue of multiple macroscopic states. We expect that an appropriate com-
bination of long range frustration and the cavity method at the first order
replica symmetry breaking level [19, 13] will offer the statistical physics com-
munity a powerful tool to advance our understanding of spin glass statistical
physics.

The author acknowledges the kind support of Professor Reinhard Lipowsky.
He benefits from an stimulating discussion with Professor Lu Yu at the initial
stage of this exploration. He also receives momentum from Dr. Jing Han
and Mr. Ming Li.
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[13] Mézard, M & Parisi, G. (2003) J. Stat. Phys. 111, 1–34.

[14] Zhou, H. (2004) (in preparation).

[15] Fernandez de la Vega, W. (2001) Theor. Comput. Sci. 265, 131–146.
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